题目内容
【题目】如图,点 A,C 是数轴上的点,点 A 在原点上,AC=10.动点 P,Q 网时分别从 A,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度,点 M 是 AP 的中点,点 N 是 CQ 的中点.设运动时间为t秒(t>0)
(1) 点C表示的数是______ ;点P表示的数是______,点Q表示的数是________(点P.点 Q 表示的数用含 t 的式子表示)
(2) 求 MN 的长;
(3) 求 t 为何值时,点P与点Q相距7个单位长度?
【答案】(1) (2) (3)或
【解析】
(1)根据动点P、Q的运动轨迹可得,,即可解答.
(2)根据中点平分线段长度和线段的和差关系即可解答.
(3)由(1)可得,代入求解即可.
(1)∵点 A,C 是数轴上的点,点 A 在原点上,AC=10
∴点C表示的数是10
∵动点 P,Q 网时分别从 A,C 出发沿数轴正方向运动,速度分别为每秒 3 个单位长度和每秒 1 个单位长度
∴,
∴点P表示的数是,点Q表示的数是
故答案为:.
(2)∵点 M 是 AP 的中点,点 N 是 CQ 的中点,,
∴,
∴.
(3)∵点P表示的数是,点Q表示的数是
∴
∵点P与点Q相距7个单位长度
∴
解得或.
【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.
月份n(月) | 1 | 2 |
成本y(万元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.