题目内容

【题目】如图,边长分别为48的两个正方形ABCDCEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为_____

【答案】2

【解析】

根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.

BDGE分别是正方形ABCD,正方形CEFG的对角线,

∴∠ADB=CGE=45°,

∴∠GDT=180°90°45°=45°,

∴∠DTG=180°GDTCGE=180°45°45°=90°,

DGT是等腰直角三角形,

∵两正方形的边长分别为4,8,

DG=84=4,

GT=×4=2.

故答案为:2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网