题目内容
【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.
【答案】(1)y=﹣x2﹣2x+3(2)(3)Q(,),或(,)
【解析】试题分析:(1)根据题意求出A、B、C的坐标,然后根据待定系数法求函数的解析式即可;
(2)设点P(x,0),则PB=1﹣x,根据三角形的面积可得二次函数的解析式,然后根据二次函数的最值可求解;
(3)根据配方法求出顶点的坐标,然后根据等腰三角形的性质,结合勾股定理列方程可求解.
试题解析:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.
∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
∴OA=OC=3,∴A(﹣3,0),
∵点A,B,C在抛物线上,
∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,
(2)设点P(x,0),则PB=1﹣x,
∴S△PBE=(1﹣x)2,
∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x﹣1)2+,
当x=1时,S△PCE的最大值为.
(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点坐标(﹣1,4),
∵△OMQ为等腰三角形,OM为底,
∴MQ=OQ,
∴=,
∴8x2+18x=7=0,∴x=,∴y=或y=,
∴Q(,),或(,).
练习册系列答案
相关题目