题目内容
某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)按要求安排A、B两种产品的件数有几种方案?请你设计出来.
(2)以上方案哪种利润最大?是多少元?
分析:(1)本题首先找出题中的等量关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.
(2)本题可将三种方案的最大利润都求出来,再进行比较即可.
(2)本题可将三种方案的最大利润都求出来,再进行比较即可.
解答:解:(1)设生产A种产品x件,则有
,
解得:30≤x≤32,
所以有三种方案:①安排A种产品30件,B种产品20件;
②安排A种产品31件,B种产品19件;
③安排A种产品32件,B种产品18件.
(2)∵方案一为:700×30+1200×20=45000元;
方案二为:700×31+1200×19=44500元;
方案三为:700×32+1200×18=44000元.
采用方案①所获利润最大,为45000元.
|
解得:30≤x≤32,
所以有三种方案:①安排A种产品30件,B种产品20件;
②安排A种产品31件,B种产品19件;
③安排A种产品32件,B种产品18件.
(2)∵方案一为:700×30+1200×20=45000元;
方案二为:700×31+1200×19=44500元;
方案三为:700×32+1200×18=44000元.
采用方案①所获利润最大,为45000元.
点评:解题关键是要读懂题目的意思,找出题中隐藏的不等关系甲种原料不超过360千克,乙种原料不超过290千克,列出不等式组解出即可.
练习册系列答案
相关题目
某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种产品共40件,生产A、B两种产品用料情况如下表:
设生产A产品x件,请解答下列问题:
(1)求x的值,并说明有哪几种符合题意的生产方案;
(2)若甲种原料50元/kg、乙种原料40元/kg,说明(1)中哪种方案较优?
需要甲原料 | 需要乙原料 | |
一种A种产品 | 7kg | 4kg |
一种B种产品 | 3kg | 10kg |
(1)求x的值,并说明有哪几种符合题意的生产方案;
(2)若甲种原料50元/kg、乙种原料40元/kg,说明(1)中哪种方案较优?