题目内容
【题目】如图,已知四边形ABCD是平行四边形,P为DC延长线上一点,AP分别交BD,BC于点M,N.
(1)图中相似三角形共有_____对;
(2)证明:AM2=MNMP;
(3)若AD=6,DC:CP=2:1,求BN的长.
【答案】(1)6;(2)证明见解析;(3)BN=4.
【解析】
(1)根据相似三角形的判定定理来做:△ADB∽△CBD、△ABN∽△PCN、△ADM∽△NBM、△AMB∽△PMD、△APD∽△ABN;
(2)由四边形ABCD是平行四边形的性质来证明△ADM∽△NBM、△PDM∽△ABM;再由相似三角形的对应边成比例的性质知:=、=,所以AM2=MNMP.
(3)由四边形ABCD是平行四边形的性质来证明△PCN∽△PDA;再由相似三角形的对应边成比例的性质知:=;最后根据已知条件求解即可.
(1)解:6;
有△AMB∽△PMD,△ADM∽△NBM,△ABN∽△PCN∽△PDA,△ABD≌△CDB,
∴共6对;
(2)证明:∵AD∥BC,
∴∠ADM=∠NBM,∠DAM=∠BNM,
∴△ADM∽△NBM,
∴=;
∵AB∥DC,
∴∠P=∠BAM,∠MDP=∠ABM,
∴△PDM∽△ABM,
∴=,
∴=,
∴AM2=MNMP;
(3)解:∵AD∥BC,
∴∠PCN=∠PDA,∠P=∠P,
∴△PCN∽△PDA,
∴=,
∵DC:CP=2:1,
∴==;
又∵AD=6
∴NC=2,BN=4
练习册系列答案
相关题目