题目内容
【题目】如图,C为半圆内一点,O为圆心,直径AB长为4cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为______cm2.
【答案】.
【解析】试题分析:已知∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,可得∠B′OC′=60°,△BCO=△B′C′O,所以∠B′OC=60°,∠C′B′O=30°,即∠B′OB=∠B′OC+∠BOC=120°;又因AB=2cm,可得OB=1cm,OC′=,由此计算出B′C′=,所以阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+bx+c中x和y的值如下表:( )
x | 0.10 | 0.11 | 0.12 | 0.13 | 0.14 |
y | -5.6 | -3.1 | -1.5 | 0.9 | 1.8 |
则ax2+bx+c=0的一个根的范围是( )
A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14