题目内容

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

(1)如图1,当tan∠PAB=1,c=4 时,a= , b=
如图2,当∠PAB=30°,c=2时,a= , b=

(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.

【答案】
(1)4 ;4

(2)

结论a2+b2=5c2

证明:如图3中,连接MN.

∵AM、BN是中线,

∴MN∥AB,MN= AB,

∴△MPN∽△APB,

= =

设MP=x,NP=y,则AP=2x,BP=2y,

∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2

b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2

c2=AB2=AP2+BP2=4x2+4y2

∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2


(3)

解:如图4中,在△AGE和△FGB中,

∴△AGE≌△FGB,

∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,

同理可证△APH≌△BFH,

∴AP=BF,PE=CF=2BF,

即PE∥CF,PE=CF,

∴四边形CEPF是平行四边形,

∴FP∥CE,

∵BE⊥CE,

∴FP⊥BE,即FH⊥BG,

∴△ABF是中垂三角形,

由(2)可知AB2+AF2=5BF2

∵AB=3,BF= AD=

∴9+AF2=5×( 2

∴AF=4


【解析】(1)解:如图1中,∵CN=AN,CM=BM,
∴MN∥AB,MN= AB=2
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PNM=∠PMN=45°,
∴PN=PM=2,PB=PA=4,
∴AN=BM= =2
∴b=AC=2AN=4 ,a=BC=4
故答案为4 ,4
如图2中,连接NM,
, ∵CN=AN,CM=BM,
∴MN∥AB,MN= AB=1,
∵∠PAB=30°,
∴PB=1,PA=
在RT△MNP中,∵∠NMP=∠PAB=30°,
∴PN= ,PM=
∴AN= ,BM=
∴a=BC=2BM= ,b=AC=2AN=
故答案分别为
(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解决问题.②连接MN,在RT△PAB,RT△PMN中,利用30°性质求出PA、PB、PN、PM,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2 . 设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网