题目内容
【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
(1)如图1,当tan∠PAB=1,c=4 时,a= , b=;
如图2,当∠PAB=30°,c=2时,a= , b=;
(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.
【答案】
(1)4 ;4 ;
;
(2)
结论a2+b2=5c2.
证明:如图3中,连接MN.
∵AM、BN是中线,
∴MN∥AB,MN= AB,
∴△MPN∽△APB,
∴ = = ,
设MP=x,NP=y,则AP=2x,BP=2y,
∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,
b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2
(3)
解:如图4中,在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,
同理可证△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四边形CEPF是平行四边形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF= AD= ,
∴9+AF2=5×( )2,
∴AF=4
【解析】(1)解:如图1中,∵CN=AN,CM=BM,
∴MN∥AB,MN= AB=2 ,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PNM=∠PMN=45°,
∴PN=PM=2,PB=PA=4,
∴AN=BM= =2 .
∴b=AC=2AN=4 ,a=BC=4 .
故答案为4 ,4 ,
如图2中,连接NM,
, ∵CN=AN,CM=BM,
∴MN∥AB,MN= AB=1,
∵∠PAB=30°,
∴PB=1,PA= ,
在RT△MNP中,∵∠NMP=∠PAB=30°,
∴PN= ,PM= ,
∴AN= ,BM= ,
∴a=BC=2BM= ,b=AC=2AN= ,
故答案分别为 , .
(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解决问题.②连接MN,在RT△PAB,RT△PMN中,利用30°性质求出PA、PB、PN、PM,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2 . 设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.