题目内容
【题目】如图,AD是△ABC的中线,AB:AD:BC=13:12:10,△ABD的周长是60cm.求AC.
【答案】AC=26(cm)
【解析】
设AB=13x,AD=12x,BC=10x,则BD=CD=5x,所以13x+12x+5x=60,解得x=2,根据勾股定理的逆定理可证明△ABD为直角三角形,∠ADB=90°,所以AD垂直平分BC,从而得出答案即可.
设AB=13x,AD=12x,BC=10x,
∵AD是△ABC的中线,
∴BD=CD=5x,
∵△ABD的周长是60cm,
∴13x+12x+5x=60,解得x=2,
∴BD=10,AD=24,AB=26,
∵102+242=262,
∴BD2+AD2=AB2,
∴△ABD为直角三角形,∠ADB=90°,
∴AD⊥BC,
而BD=CD,
∴AC=AB=26(cm).
练习册系列答案
相关题目
【题目】某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,小宇根据他们的成绩(单位:环)绘制了如下尚不完整的统计表:
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成绩 | 9 | 4 | 7 | a | 6 |
乙成绩 | 7 | 5 | 7 | 4 | 7 |
(1)若甲成绩的平均数为6环,求a的值;
(2)若甲成绩的方差为3.6,请计算乙成绩的方差并说明谁的成绩更稳定?