题目内容
【题目】在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.
(1)如图1,点D在BC边上.
①依题意补全图1;
②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长;
(2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).
【答案】(1)①图见解析;②BE=5;(2)见解析.
【解析】
(1)①根据题意画出图形即可;
②根据SAS证明△ADF≌△EDB,根据全等三角形的性质得到AF=EB.在△ABC和△DFB中,根据勾股定理得到AB=8,BF=3.再根据线段的和差关系得到AF=AB-BF=5,即BE=5.
(2)根据AAS证明△ACD≌△DFE,根据全等三角形的性质得到EF=DC.再根据等腰直角三角形的性质得到EF=BE,BC=AB,根据等量关系即可得到BD=BE+AB.
(1)①补全图形,如图1所示.
②如图1②,
由题意可知AD=DE,∠ADE=90°.
∵DF⊥BC,
∴∠FDB=90°.
∴∠ADF=∠EDB.
∵∠C=90°,AC=BC,
∴∠ABC=∠DFB=45°.
∴DB=DF.
∴△ADF≌△EDB.
∴AF=EB.
在△ABC和△DFB中,
∵AC=8,DF=3,
∴A=8,BF=3.
AF=AB-BF=5
即BE=5.
(2)如图2,
BD=BE+AB.
练习册系列答案
相关题目
【题目】我市少体校为了从甲、乙两名运动员中选出一名运动员参加省运动会百米比赛,组织了选拔测试,分别对两人进行了五次测试,成绩(单位:秒)以及平均数、方差如表:
甲 | 13 | 13 | 14 | 16 | 18 | x=14.8 | S=3.76 |
乙 | 14 | 14 | 15 | 15 | 16 | x=14.8 | S=0.56 |
学校决定派乙运动员参加比赛,理由是 .