题目内容

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:
①AD=BE;②AP=BQ;③∠AOB=60°;④DE=DP,其中正确的结论有   (   )
A.①②③B.①③④C.①②D.②③④
A
解:已知△ABC、△DCE为正三角形,
故∠DCE=∠BCA=60°,∴∠DCB=60°,
又因为∠DPC=∠DAC+∠BCA,∠BCA=60°,∴∠DPC>60°,
故DP不等于DE,④错.
∵△ABC、△DCE为正三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,AD=BE,故①正确;
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=60°,故③正确;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACP=∠BCQ,
∵AC=BC,∠DAC=∠QBC,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,故②正确;
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网