题目内容
【题目】如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是_____.
【答案】3
【解析】
根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.
解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,
∴CD=DE=1,
∵DE是AB的垂直平分线,
∴AD=BD,
∴∠B=∠DAB,
∵∠DAB=∠CAD,
∴∠CAD=∠DAB=∠B,
∵∠C=90°,
∴∠CAD+∠DAB+∠B=90°,
∴∠B=30°,
∴BD=2DE=2,
∴BC=BD+CD=1+2=3,
故答案为:3.
练习册系列答案
相关题目
【题目】某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 | 2号 | 3号 | 4号 | 5号 | 总成绩 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:
(1)计算两班的优秀率;
(2)求两班比赛数据的中位数;
(3)求两班比赛数据的方差;
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.