题目内容

【题目】实验探究:

(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.

【答案】(1)猜想:∠MBN=30°,理由见解析;(2)结论:MN=BM.折纸方案及证明见解析.

【解析】试题分析:(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;

(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;

试题解析:(1)猜想:∠MBN=30°.

理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,

∴NA=NB,

由折叠可知,BN=AB,

∴AB=BN=AN,

∴△ABN是等边三角形,

∴∠ABN=60°,

∴NBM=∠ABM=∠ABN=30°.

(2)结论:MN=BM.

折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.

理由:由折叠可知△MOP≌△MNP,

∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,

∠MOP=∠MNP=90°,

∴∠BOP=∠MOP=90°,

∵OP=OP,

∴△MOP≌△BOP,

∴MO=BO=BM,

∴MN=BM.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网