题目内容
【题目】如图1,BD是正方形ABCD的对角线,BC=4,点H是AD边上的一动点,连接CH,作,使得HE=CH,连接AE。
(1)求证:;
(2)如图2,过点E作EF//AD交对角线BD于点F,试探究:在点H的运动过程中,EF的长度是否为一个定值;如果是,请求出EF的长度。
【答案】(1)见解析(2)EF为定值4
【解析】
(1)根据CH⊥HE与正方形的内角为90°即可证明;
(2)连接FH,作EM⊥AG延长线,可证明四边形EFHM为矩形,再得到EF=HM=DC即可求解.
(1)∵CH⊥HE
∴∠CHD+∠AHE=90°,
又∠DCH+∠CHD=90°,
∴
(2)连接FH,作EM⊥AG延长线,
∵EF//AD,FH⊥DA,∴四边形EFHM为矩形
∴EF=HM
∵CH=HE,,又∠CDH=∠HME=90°,
∴△CDH≌△HME
∴HM=CD,
故EF=CD=4为定值.
练习册系列答案
相关题目