题目内容
【题目】如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
【答案】A
【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠3,
则△A1OM∽△OC1N,
∵OA=5,OC=3,
∴OA1=5,A1M=3,
∴OM=4,
∴设NO=3x,则NC1=4x,OC1=3,
则(3x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(-,).
故选:A.
练习册系列答案
相关题目
【题目】时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:
球类名称 | 乒乓球 | 羽毛球 | 排球 | 篮球 | 足球 |
人数 | 42 | 15 | 33 |
解答下列问题:
(1)这次抽样调查中的样本是________;
(2)统计表中,________,________;
(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.