题目内容
【题目】如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是( )
A.1.5B.2C.D.
【答案】D
【解析】
连接OD,根据切线的性质求出∠ODP=90°,根据勾股定理求出PD,证明BC是⊙O的切线,根据切线长定理得出CD=BC,再根据勾股定理求出BC即可.
连接OD,如图所示
∵PC切⊙O于D
∴∠ODP=90°
∵⊙O的半径为1,PA=AO,AB是⊙O的直径
∴PO=1+1=2,PB=1+1+1=3,OD=1
∴由勾股定理得:PD=
∵BC⊥AB,AB过O
∴BC切⊙O于B
∵PC切⊙O于D
∴CD=BC
设CD=CB=x
在Rt△PBC中,由勾股定理得:PC2=PB2+BC2
即
解得:x=
即BC=
故选:D
练习册系列答案
相关题目