题目内容
【题目】如图,G 为 BC 的中点,且 DG⊥BC,DE⊥AB 于 E,DF⊥AC 于 F, BE=CF.
(1)求证:AD 是∠BAC 的平分线;
(2)如果 AB=8,AC=6,求 AE 的长.
【答案】(1)见解析;(2)7.
【解析】
(1)因为G为BC的中点,且DG⊥BC,则DG是线段BC的垂直平分线,考虑连接DB、DC,利用线段的垂直平分线的性质,又因为DE⊥AB,DF⊥AC,可通过DE=DF说明AD是∠BAC的平分线;
(2)先通过△AED与△ADF的全等关系,说明AE与AF的关系,利用线段的和差关系,通过线段的加减求出AE的长.
(1)连接BD、DC
∵DG⊥BC,G为BC的中点,
∴BD=CD,
∵DG⊥BC,DE⊥AB
∴∠BED=∠CFD,
在Rt△DBE和Rt△DFC中,
∴△DBE≌△DFC
∴DE=DF,
∴∠BAD=∠FAD
∴AD是∠BAC的平分线;
(2)∵DE=DF,∠BAD=∠FAD,AD=AD
∴△AED≌△ADF,
∴AE=AF
∵AB=AE+BE,AC=AF-CF,
∴AB+AC=AE+AF,
∵AB=8,AC=6,
∴8+6=2AE,
∴AE=7.
练习册系列答案
相关题目