题目内容
【题目】如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.
(1)求证:BP=CQ;
(2)若BP=PC,求AN的长;
(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.
【答案】(1)见解析;(2)4.8;(3)
【解析】
(1)证明△ABP≌△BCQ即可得到结论;
(2)证明Rt△ABN≌△Rt△C'BN求出DQ,设AN=NC'=a,则DN=8﹣a,利用勾股定理即可求出a;
(3)过Q点作QG⊥BM于G,设MQ=BM=y,则MG=y﹣x,利用勾股定理求出MQ,再根据面积相减得到答案.
解:(1)证明:∵∠ABC=90°
∴∠BAP+∠APB=90°
∵BQ⊥AP
∴∠APB+∠QBC=90°,
∴∠QBC=∠BAP,
在△ABP于△BCQ中,
,
∴△ABP≌△BCQ(ASA),
∴BP=CQ,
(2)由翻折可知,AB=BC',
连接BN,在Rt△ABN和Rt△C'BN中,AB=BC',BN=BN,
∴Rt△ABN≌△Rt△C'BN(HL),
∴AN=NC',
∵BP=PC,AB=8,
∴BP=2=CQ,CP=DQ=6,
设AN=NC'=a,则DN=8﹣a,
∴在Rt△NDQ中,(8﹣a)2+62=(a+2)2
解得:a=4.8,
即AN=4.8.
(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.
设MQ=BM=y,则MG=y﹣x,
∴在Rt△MQG中,y2=82+(y﹣x)2,
∴.
∴S△BMC′=S△BMQ﹣S△BC'Q=,
=,
=.
【题目】某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.
球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 18 | 24 | 18 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.