题目内容
【题目】如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.
(1)探求:∠F与∠B、∠D有何等量关系?
(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?
【答案】【答案:(1)∠F=(∠B+∠D);(2)3.
【解析】试题分析:(1)由三角形内角和外角的关系可知∠D+∠1=∠3+∠F,∠2+∠F=∠B+∠4,由角平分线的性质可知∠1=∠2,∠3=∠4,故∠F=(∠B+∠D).
(2)设∠B=2α,则∠D=4α.利用(1)中的结论和已知条件来求x的值.
试题解析:解:(1)∠F=(∠B+∠D);
理由如下:
∵∠DHF是△DEH的外角,∠EHC是△FCH的外角,∠DHF=∠EHC,∴∠D+∠1=∠3+∠F ①
同理,∠2+∠F=∠B+∠4 ②
又∵∠DEA,∠BCA的平分线相交于F,∴∠1=∠2,∠3=∠4;
∴①﹣②得:∠B+∠D=2∠F,即∠F=(∠B+∠D).
(2)∵∠B:∠D:∠F=2:4:x,∴设∠B=2α,则∠D=4α,∴∠F=(∠B+∠D)=3α,又∠B:∠D:∠F=2:4:x,∴x=3.
练习册系列答案
相关题目