题目内容
【题目】三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:
(1)请将表一和图一中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
【答案】(1)补图见解析;(2)A,105;B,120;C,75;(3)B.
【解析】试题分析:(1)根据统计图可得A的口试成绩是90,根据统计表可得C的笔试成绩是90分,即可作图;
(2)利用B所占的比例乘以360度即可求解;
(3)首先求得A、B、C的投票得分,然后利用加权平均数公式即可求解.
试题解析:(1)补充图形如下:
竞选人 | A | B | C |
笔试 | 85 | 95 | 90 |
口试 | 90 | 80 | 85 |
;
(2)360°×40%=144°,
故答案为:144°;
(3)A的投票得分是:300×35%=105(分),则A的最后得分是=92.5(分);
B的投票得到是:300×40%=120(分),则B的最后得分是=98(分);
C的投票得分是:300×25%=75(分),则C的最终得分是=84(分).
所以B当选.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别(m) | 频数 |
1.09~1.19 | 8 |
1.19~1.29 | 12 |
1.29~1.39 | A |
1.39~1.49 | 10 |
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
【题目】某校1200名学生参加了全区组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.
根据以上信息,解答下列问题:
(1)本次调查的学生数为__人;
(2)图表中的a、b、c的值分别为__,__,__;
(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多__人;
(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.
四月日人均诵读时间的统计表
日人均诵读时间x/h | 人数 | 百分比 |
0≤x≤0.5 | 6 | |
0.5<x≤1 | 30 | |
1<x≤1.5 | 50% | |
1.5<x≤2 | 10 | 10% |
2<x≤2.5 | b | c |
三月日人均诵读时间的频数分布直方图