题目内容
(1)化简并求值:(y-2 |
y2+2y |
y-1 |
y2+4y+4 |
y-4 |
y+2 |
(2)已知a=2-
3 |
1-2a+a2 |
a-1 |
| ||
a2-a |
1 |
a |
(3)计算:
50 |
8 |
2 |
5 |
|
(
|
(4)解分式方程:
2 |
1-x |
x |
3-x |
2x-1 |
(x-1)(x-3) |
分析:(1)(2)先把原式化简,化为最简后再代数求值即可;
(3)先把各分式化简,化为最简后再按照从左到右的顺序依次计算即可.
(4)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
(3)先把各分式化简,化为最简后再按照从左到右的顺序依次计算即可.
(4)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
解答:解:(1)原式=(
-
)÷
=
÷
=
由y2+2y-1=0得y2+2y=1.
∴原式=1;
(2)原式=
-
-
=a-1,
当a=2-
时,原式=1-
;
(3)原式=5
-(2
+
)+3-
=5
-2
-
+3-
=
+3;
(4)原方程可化为:
+
+
=1,
+
+
=1
=1
解得:x=-
,
检验:把x=-
代入(x-1)(x-3)≠0,
∴原方程的解为x=-
.
y-2 |
y(y+2) |
y-1 |
(y+2)2 |
y-4 |
y+2 |
=
y-4 |
y(y+2)2 |
y-4 |
y+2 |
=
1 |
y2+2y |
由y2+2y-1=0得y2+2y=1.
∴原式=1;
(2)原式=
(a-1)2 |
a-1 |
| ||
a(a-1) |
1 |
a |
当a=2-
3 |
3 |
(3)原式=5
2 |
2 |
| ||
5 |
2 |
=5
2 |
2 |
| ||
5 |
2 |
=
9 |
5 |
2 |
(4)原方程可化为:
-2 |
x-1 |
x |
x-3 |
2x-1 |
(x-1)(x-3) |
-2(x-3) |
(x-1)(x-3) |
x(x-1) |
(x-1)(x-3) |
2x-1 |
(x-1)(x-3) |
x2-x+5 |
x2-4x-3 |
解得:x=-
8 |
3 |
检验:把x=-
8 |
3 |
∴原方程的解为x=-
8 |
3 |
点评:本题考查了分式的化简求值、二次根式的化简求值以及解分式方程,此题综合性较强,计算是比较繁琐,一定要细心才行.
练习册系列答案
相关题目