题目内容
如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.
(1)求证:FB为⊙O的切线;
(2)若AB=8,CE=2,求sin∠F.
(1)见解析;(2)
解析试题分析:(1)连接OB,由圆周角定理可得∠CBD=90°,再由圆所具有的性质及已知条件,可得∠OBF=90°;从而问题得证;
(2)先由垂径定理求得BE的长,然后根据△OBE∽△OBF,利用相似三角形的性质求得OF的长,则sinF即可求解.
试题解析:(1)连接OB.
∵CD是直径,
∴∠CBD=90°,
又∵OB=OD,
∴∠OBD=∠D,
又∠CBF=∠D,
∴∠CBF=∠OBD,
∴∠OBF=90°,即OB⊥BF,
∴FB是圆的切线;
(2)∵CD是圆的直径,CD⊥AB,
∴BE=AB=4,
设圆的半径是R,在直角△OEB中,根据勾股定理得:R2=(R﹣2)2+42,
解得:R=5,
∵∠BOE=∠FOB,∠BEO=∠OBF,
∴△OBE∽△OBF,
∴OB2=OE•OF,
∴OF=,
则在直角△OBF中,sinF=
考点:1、圆周角定理;2、切线的判定;3、相似三角形的判定与性质;4、勾股定理
练习册系列答案
相关题目