题目内容

【题目】如图,在平面直角坐标系中,四边形 OABC 是矩形,点 B 的坐标为(4,3).

(1)直接写出AC两点的坐标;

(2)平行于对角线AC的直线 m 从原点O出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 m 与矩形 OABC 的两边分别交于点M、N,设直线m运动的时间为t(秒).

MNAC,求 t 的值;

OMN 的面积为S,当 t 为何值时,S=.

【答案】(1)A(4,0),C(0,3);(2)①t2 6;t=2 或 4+2

【解析】

(1)因为四边形OABC是矩形且点B的坐标为(4,3),所以可知,OA=CB=4,OC=AB=3,故可知A、C两点的坐标;
(2)①可以分为两种情况:当M、N分别在OA、OC上时,可证明△OMN∽△OAC,由题意可求得OM的长,即可求得t的值;当M、N分别在AB、BC上时,可证明△BMN∽△BAC,由题意可求得BM的长,即可由相似三角形的性质求得t的值,综合以上两种情况即是要求的t值.
②可以分为两种情况:当M、N分别在OA、OC上时,可证明△OMN∽△OAC,由题意可求得OM、ON的长,即可求得面积的表达式,再由面积为可得t的值;当M、N分别在AB、BC上时,由△DAM∽△AOC,可得AM,由△BMN∽△BAC,可得BN,即可得BM、CN,由S=矩形OABC的面积-Rt△OAM的面积-Rt△MBN的面积-Rt△NCO的面积,可得关于t的表达式,再由面积为可得t的值,综合以上两种情况即是要求的t值.

解:(1)A(4,0),C(0,3);

(2)①x 轴正方向以每秒 1 个单位长度的速度运动,直线 m 运动的时间为 t 可以分为两种情况:

MN 分别在 OAOC 上时,如下图所示:

直线 m 平行于对角线 AC

∴△OMN∽△OAC

==

t=2;

MN 分别在 ABBC 上时,如下图所示:

直线 m 平行于对角线 AC

∴△BMN∽△BAC

=

t=6

综上所述,当 t=2 6 时,MNAC

0<t≤4 时,OMt,△OMN∽△OAC

ONtSt2

t=2;

4<t<8 时,

如图,ODt,∴ADt﹣4.

DAM∽△AOCspan>,可得 AMt﹣4)

BM=6﹣t

BMN∽△BAC,可得 BNBM=8﹣t

CNt﹣4

S=矩形 OABC 的面积﹣Rt△OAM 的面积﹣Rt△MBN 的面积﹣Rt△NCO 的面积

=12﹣(8﹣t)(6﹣t)﹣

=﹣t2+3t

∴﹣t2+3t=

解得:t=4±2

∴t=4+2

故当 t=2 4+2时,OMN 的面积 S

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网