题目内容
【题目】如图,在平面直角坐标系中,四边形 OABC 是矩形,点 B 的坐标为(4,3).
(1)直接写出A、C两点的坐标;
(2)平行于对角线AC的直线 m 从原点O出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 m 与矩形 OABC 的两边分别交于点M、N,设直线m运动的时间为t(秒).
①若 MN=AC,求 t 的值;
②设△OMN 的面积为S,当 t 为何值时,S=.
【答案】(1)A(4,0),C(0,3);(2)①t=2 或 6;②t=2 或 4+2
【解析】
(1)因为四边形OABC是矩形且点B的坐标为(4,3),所以可知,OA=CB=4,OC=AB=3,故可知A、C两点的坐标;
(2)①可以分为两种情况:当M、N分别在OA、OC上时,可证明△OMN∽△OAC,由题意可求得OM的长,即可求得t的值;当M、N分别在AB、BC上时,可证明△BMN∽△BAC,由题意可求得BM的长,即可由相似三角形的性质求得t的值,综合以上两种情况即是要求的t值.
②可以分为两种情况:当M、N分别在OA、OC上时,可证明△OMN∽△OAC,由题意可求得OM、ON的长,即可求得面积的表达式,再由面积为可得t的值;当M、N分别在AB、BC上时,由△DAM∽△AOC,可得AM,由△BMN∽△BAC,可得BN,即可得BM、CN,由S=矩形OABC的面积-Rt△OAM的面积-Rt△MBN的面积-Rt△NCO的面积,可得关于t的表达式,再由面积为可得t的值,综合以上两种情况即是要求的t值.
解:(1)A(4,0),C(0,3);
(2)①x 轴正方向以每秒 1 个单位长度的速度运动,直线 m 运动的时间为 t , 可以分为两种情况:
当 M、N 分别在 OA、OC 上时,如下图所示:
∵直线 m 平行于对角线 AC
∴△OMN∽△OAC
∴==
∴t=2;
当 M、N 分别在 AB、BC 上时,如下图所示:
∵直线 m 平行于对角线 AC
∴△BMN∽△BAC
∴== =
∴t=6
综上所述,当 t=2 或 6 时,MN=AC
得
②当 0<t≤4 时,OM=t,△OMN∽△OAC,得 ,
∴ON=t,S=t2=
∴t=2;
当 4<t<8 时,
如图,∵OD=t,∴AD=t﹣4.
由△DAM∽△AOCspan>,可得 AM=(t﹣4)
∴BM=6﹣t.
由△BMN∽△BAC,可得 BN=BM=8﹣t
∴CN=t﹣4
S=矩形 OABC 的面积﹣Rt△OAM 的面积﹣Rt△MBN 的面积﹣Rt△NCO 的面积
=12﹣﹣(8﹣t)(6﹣t)﹣
=﹣t2+3t,
∴﹣t2+3t=
解得:t=4±2
∴t=4+2
故当 t=2 或 4+2时,△OMN 的面积 S= .