题目内容
【题目】如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).
(1)当AE=8时,求EF的长;
(2)设AE=x,矩形EFPQ的面积为y.
①求y与x的函数关系式;
②当x为何值时,y有最大值,最大值是多少?
(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
【答案】(1)4;(2)①y=﹣x2+3x(0<x<12);②x=6时,y有最大值为9;(3)S=
【解析】
(1)由EF∥BC,可得,由此即可解决问题;
(2)①先根据点E为AB上一点得出自变量x的取值范围,根据30度的直角三角形的性质求出EF和AF的长,在在Rt△ACB中,根据三角函数求出AC的长,计算FC的长,利用矩形的面积公式可求得S的函数关系式;
②把二次函数的关系式配方可以得结论;
(3)分两种情形分别求解即可解决问题.
解:(1)在Rt△ABC中,∵AB=12,∠A=30°,
∴BC=AB=6,AC=BC=6,
∵四边形EFPQ是矩形,
∴EF∥BC,
∴=,
∴=,
∴EF=4.
(2)①∵AB=12,AE=x,点E与点A、点B均不重合,
∴0<x<12,
∵四边形CDEF是矩形,
∴EF∥BC,∠CFE=90°,
∴∠AFE=90°,
在Rt△AFE中,∠A=30°,
∴EF=x,
AF=cos30°AE=x,
在Rt△ACB中,AB=12,
∴cos30°=,
∴AC=12×=6,
∴FC=AC﹣AF=6﹣x,
∴y=FCEF=x(6﹣x)=﹣x2+3x(0<x<12);
②y=x(12﹣x)=﹣(x﹣6)2+9,
当x=6时,S有最大值为9;
(3)①当0≤t<3时,如图1中,重叠部分是五边形MFPQN,
S=S矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.
②当3≤t≤6时,重叠部分是△PBN,
S=(6﹣t)2,
综上所述,S=