题目内容
【题目】(8分)如图所示,在四边形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.
【答案】四边形ABCD的面积是6.
【解析】试题分析:连接BD,根据勾股定理可计算出BD的长度,再由勾股定理逆定理可判断出△ABD为直角三角形,分别计算出△ABD和△BCD的面积,求和即可.
试题解析:
连接BD,
∵∠C=90°,
∴△BCD为直角三角形,
∴BD2=BC2+CD2=22+12=()2,BD>0,
∴BD=,
在△ABD中,
∵AB2+BD2=20+5=25,AD2=52=25,
∴AB2+BD2=AD2,
∴△ABD为直角三角形,且∠ABD=90°,
∴S四边形ABCD=S△ABD+S△BCD=×2×+×2×1=6.
∴四边形ABCD的面积是6.
练习册系列答案
相关题目