题目内容
【题目】如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.
(1)求证:MN⊥CE;
(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;
(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.
试题解析:
(1)证明:延长DN交AC于F,连BF,
∵N为CE中点,
∴EN=CN,
∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,
∴∠EAD=∠EDA=∠BAC=45°,
∴DE∥AC,
∴△EDN∽△CFN,
∴ ,
∵EN=NC,
∴DN=FN,FC=ED,
∴MN是△BDF的中位线,
∴MN∥BF,
∵AE=DE,DE=CF,
∴AE=CF,
∵∠EAD=∠BAC=45°,
∴∠EAC=∠ACB=90°,
在△CAE和△BCF中,
,
∴△CAE≌△BCF(SAS),
∴∠ACE=∠CBF,
∵∠ACE+∠BCE=90°,
∴∠CBF+∠BCE=90°,
即BF⊥CE,
∵MN∥BF,
∴MN⊥CE.
(2)证明:延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,
∵M为BD中点,
∴MN是△BDG的中位线,
∴BG=2MN,
在△EDN和CGN中,
,
∴△EDN≌△CGN(SAS),
∴DE=CG=AE,∠GCN=∠DEN,
∴DE∥CG,
∴∠KCG=∠CKE,
∵∠CAE=45°+30°+45°=120°,
∴∠EAK=60°,
∴∠CKE=∠KCG=30°,
∴∠BCG=120°,
在△CAE和△BCG中,
,
∴△CAE≌△BCG(SAS),
∴BG=CE,
∵BG=2MN,
∴CE=2MN.