题目内容

【题目】如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.

【答案】解:如图,连接OB.

∵AD是△ABC的高.

∴BD= BC=6

在Rt△ABD中,AD= = =8.

设圆的半径是R.

则OD=8﹣R.

在Rt△OBD中,根据勾股定理可以得到:R2=36+(8﹣R)2

解得:R=


【解析】连接OB,根据垂经定理求出BD的长,在Rt△ABD中由勾股定理求得AD=8,设圆的半径是R,则OD=8-R,在Rt△OBD中由勾股定理可求得R的值.解答此题的关键是作出辅助线OB.注意:垂径定理和勾股定理常常在一起中应用.
【考点精析】本题主要考查了勾股定理的概念和垂径定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网