题目内容

【题目】如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有 . (填序号)

【答案】①②③④
【解析】解:证明:∵BC=EC,

∴∠CEB=∠CBE,

∵四边形ABCD是平行四边形,

∴DC∥AB,

∴∠CEB=∠EBF,

∴∠CBE=∠EBF,

∴①BE平分∠CBF,正确;

∵BC=EC,CF⊥BE,

∴∠ECF=∠BCF,

∴②CF平分∠DCB,正确;

∵DC∥AB,

∴∠DCF=∠CFB,

∵∠ECF=∠BCF,

∴∠CFB=∠BCF,

∴BF=BC,

∴③正确;

∵FB=BC,CF⊥BE,

∴B点一定在FC的垂直平分线上,即PB垂直平分FC,

∴PF=PC,故④正确.

所以答案是①②③④.

【考点精析】根据题目的已知条件,利用平行四边形的性质的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网