题目内容
【题目】在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.
(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;
(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB的值;
(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.
【答案】(1)证明见解析;(2); (3)当BP=时,△APQ的面积最大,最大值是;
【解析】试题分析:(1)直接证明∠C=∠PQB=90°,而∠B=∠B,即可根据两角对应相等的两三角形相似;
(2)分别根据全等三角形的性质,求出AQ=QB=AC,然后根据锐角三角形函数的性质求出tanB的值;
(3)利用勾股定理求出AB的值,然后根据相似三角形的性质列出比例式求出PQ、BQ,再根据三角形的面积公式求出△AQP面积,根据二次函数的性质和配方法解答即可.
试题解析:(1)不论点P在BC边上何处时,都有
∠PQB=∠C=90°,∠B=∠B
∴△PBQ∽△ABC;
(2)∵Rt△AQP≌Rt△ACP∴AQ=AC
又Rt△AQP≌Rt△BQP ∴AQ=QB
∴AQ=QB=AC
∴∠B=
∴
(3)设BP=x(0<x<4),由勾股定理,得 AB=5
∵由(1)知,△PBQ∽△ABC,
∴,即 ∴
S△APQ===
∴当时,△APQ的面积最大,最大值是;
练习册系列答案
相关题目