题目内容

【题目】如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE的延长线于点G.
(1)求证:DB=BG;
(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG.

【答案】
(1)证明:∵AC=BC,

∴∠A=∠CBA,

∵AC∥BG,

∴∠A=∠GBA,即∠CBA=∠GBA,

∵DE⊥AB,

∴∠DEB=∠GEB,

在△DBE和△GBE中

∴△DBE≌△GBE(ASA),

∴DB=BG;


(2)证明:∵点D为BC的中点,

∴CD=DB,

∵DB=BG,

∴CD=BG,

∵AC∥BG,

∴∠ACB+∠GBC=180°,

∵∠ACB=90°,

∴∠GBC=∠ACB=90°,

在△ACD和△CBG中

∴△ACD≌△CBG(SAS),

∴∠CAD=∠BCG,

∵∠ACG+∠BCG=90°,

∴∠ACG+∠CAD=90°,

即 AD⊥CG.


【解析】(1)由条件证明△DBE≌△GBE即可;(2)由条件可证明△ACD≌△CBG,再利用角的和差可证得结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网