题目内容

2、观察下列等式:2=2=1×2;2+4=6=2×3;2+4+6=12=3×4;2+4+6+8=20=4×5;…
(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是
n(n+1)

(2)当n=10时,从2开始到第10个连续偶数的和是
110
分析:(1)2=1×(1+1)
2+4=6=2×3=2×(2+1)
2+4+6=12=3×4=3×(3+1)
2+4+6+8=20=4×5=4×(4+1)

当有n个连续的偶数相加是,式子就应该表示成:2+4+6+…+2n=n(n+1);
(2)将n=10时代入(1)的式子计算即可.
解答:解:(1)2+4+6+…+2n=n(n+1);
(2)当n=10时,n(n+1)=10×11=110.
故答案为:n(n+1);110.
点评:本题考查了数字的变化.解题关键是先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网