题目内容
【题目】边长为8的正方形ABCD中,点P在BC边上,CP=2,点Q为线段AP上一动点,射线BQ与正方形ABCD的一边交于点R,且AP=BR,那么____________
【答案】或1
【解析】
分两种情形:①当R在AD边上时,易得△AQR∽△PQB且相似比为1:1,从而得解;②当R在CD上时,先证明BR⊥AP,再根据等面积法计算BQ,根据线段的和差计算QR,计算比值即可得解.
①当R在AD边上时,
∵四边形ABCD为正方形
∴∠BAR=∠ABP=90°,AR∥BP
又∵AP=BR,AB=AB,
∴△ABP≌△BAR,
∴AR=BP,
∵AR∥BP,
∴△AQR∽△PQB
∴.
②当R在CD上时,
∵四边形ABCD为正方形
∴∠ABC=∠BCR=90°,AB=BC
又∵AP=BR
∴△ABP≌△BCR,
∴∠BAP=∠CBR,
∵∠CBR+∠ABR=90°,
∴∠BAP+∠ABR=90°,
∴∠AQB=90°,
∴BR⊥AP,
∵AB=8.BP=6,
∴AP=BR=,
∵ABBP=APBQ,
∴,
∴
故答案为1或.
练习册系列答案
相关题目