题目内容

如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点EF.
 
(1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在      关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出αβ之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点EF与点B重合. 已知AB=4,设DP=x,△A1BB1的面
积为S,求S关于x的函数关系式.
(1) 相似。理由见解析(2)存在,α=2β+60°(3)
解:(1) 相似   …………………………………………………………1分
由题意得:∠APA1=∠BPB1=α   AP= A1P BP=B1P
则 ∠PAA1 =∠PBB1 = ……………………………2分
∵∠PBB1 =∠EBF       ∴∠PAE=∠EBF
又∵∠BEF=∠AEP
∴△BEF ∽△AEP………………………………………………………3分
(2)存在,理由如下: ………………………………………………………4分
易得:△BEF ∽△AEP
若要使得△BEF≌△AEP,只需要满足BE=AE即可 …………………5分
∴∠BAE=∠ABE
∵∠BAC=60°      ∴∠BAE=
∵∠ABE=β  BAE=∠ABE    ………………………………6分
 即α=2β+60°    ………………………………7分
(3)连结BD,交A1B1于点G
过点A1A1HAC于点H.
∵∠B1 A1P=∠A1PA=60°A1B1AC
由题意得:AP= A1 P  ∠A=60°
∴△PAA1是等边三角形
A1H= ………………………8分
在Rt△ABD中,BD=
BG=……………………………… 9分
 (0≤x<2)………………10分
(1)通过三角形的相似性求证
(2)由(1)得△BEF ∽△AEP,若要使得△BEF≌△AEP,只需要满足BE=AE,即∠BAE=∠ABE,求得∠BAE的度数的表示,即可求出αβ之间的数量关系
(3)连结BD,交A1B1于点G,过点A1A1HAC于点H.由已知求得△PAA1是等边三角形,在Rt△ABD中,求得BG的长,从而通过三角形的面积,即可求得S关于x的函数关系式
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网