题目内容
【题目】如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.
(1)求证:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的长.
【答案】(1)证明见解析;(2)3.
【解析】
(1)易由,可证△ABD≌△CFD(AAS);
(2)由△ABD≌△CFD,得BD=DF,所以BD=BC﹣CD=2,所以AF=AD﹣DF=5﹣2.
(1)证明:∵AD⊥BC,CE⊥AB,
∴∠ADB=∠CDF=∠CEB=90°,
∴∠BAD+∠B=∠FCD+∠B=90°,
∴∠BAD=∠OCD,
在△ABD和CFD中,
,
∴△ABD≌△CFD(AAS),
(2)∵△ABD≌△CFD,
∴BD=DF,
∵BC=7,AD=DC=5,
∴BD=BC﹣CD=2,
∴AF=AD﹣DF=5﹣2=3.
练习册系列答案
相关题目