题目内容
【题目】如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.
(1)求证:∠BCD=∠BEC;
(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.
【答案】(1)见解析;(2)CE=, sin∠ABF=.
【解析】
(1)先利用等角的余角相等即可得出结论;
(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.
(1)∵∠ACB=90°,
∴∠BCD+∠ACD=90°,
∵DE是⊙A的直径,
∴∠DCE=90°,
∴∠BEC+∠CDE=90°,
∵AD=AC,
∴∠CDE=∠ACD,
∴∠BCD=∠BEC,
(2)∵∠BCD=∠BEC,∠EBC=∠EBC,
∴△BDC∽△BCE,
∴,
∵BC=2,BD=1,
∴BE=4,EC=2CD,
∴DE=BE﹣BD=3,
在Rt△DCE中,DE2=CD2+CE2=9,
∴CD=,CE=,
过点F作FM⊥AB于M,
∵∠FAB=∠ABC,∠FMA=∠ACB=90°,
∴△AFM∽△BAC,
∴,
∵DE=3,
∴AD=AF=AC=,AB=,
∴FM=,
过点F作FN⊥BC于N,
∴∠FNC=90°,
∵∠FAB=∠ABC,
∴FA∥BC,
∴∠FAC=∠ACB=90°,
∴四边形FNCA是矩形,
∴FN=AC=,NC=AF=,
∴BN=,
在Rt△FBN中,BF=,
在Rt△FBM中,sin∠ABF=.
【题目】数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:
时间 | … | 4 | 8 | 10 | 16 | 20 | 21 | 22 | 23 | 24 | … |
温度/℃ | … | … |
(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;
(2)通过图表分析发现,冷柜中的温度是时间的函数.
①当时,写出符合表中数据的函数解析式;
②当时,写出符合表中数据的函数解析式;
(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?