题目内容
如图,直线,相交于点,与轴的交点坐标为,与轴的交点坐标为,结合图象解答下列问题:(每小题4分,共8分)
(1)求直线表示的一次函数的表达式;
(2)当为何值时,,表示的两个一次函数值都大于.
(1)y=x2;(2)x>.
解析试题分析:(1)因为直线l2过点A(2,3),且与y轴的交点坐标为(0,2),所以可用待定系数法求得函数的表达式.
(2)要求l1、l2表示的两个一次函数的函数值都大于0时x的取值范围,需求出两函数与x轴的交点,再结合图象,仔细观察,写出答案.
(1)设直线l2表示的一次函数表达式为y=kx+b.
∵x=0时,y=2;x=2时,y=3.
∴
∴
∴直线l2表示的一次函数表达式是y=x2.
(2)从图象可以知道,当x>1时,直线l1表示的一次函数的函数值大于0.
当x2=0,得x=.
∴当x>时,直线l2表示的一次函数的函数值大于0.
∴当x>时,l1、l2表示的两个一次函数的函数值都大于0.
考点:两条直线相交或平行问题,一次函数的图象,待定系数法求一次函数解析式
温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,
①根据信息填表:
| A地 | B地 | C地 | 合计 |
产品件数(件) | x | | 2x | 200 |
运费(元) | 30x | | | |
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.
许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:
旋钮角度(度) | 20 | 50 | 70 | 80 | 90 |
所用燃气量(升) | 73 | 67 | 83 | 97 | 115 |
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.