题目内容
【题目】如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)
【答案】解:如图,过点C作CF⊥AB于点F.
设塔高AE=x,
由题意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29)m,
在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,
则CF= ≈ = x+ ,
在Rt△ABD中,∠ADB=45°,AB=x+56,
则BD=AB=x+56,
∵CF=BD,
∴x+56= x+ ,
解得:x=52,
答:该铁塔的高AE为52米.
【解析】设出未知数铁塔高为x ,用x 的代数式表示出AF、BD,在Rt△ABD中利用∠ADB=45°构建方程,求出x.
练习册系列答案
相关题目