题目内容
【题目】如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)直接写出点E的坐标: .
(2)求证:AG=CH.
(3)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(4)在(3)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.
【答案】
(1)(1, )
(2)解:证明:∵矩形OABC,
∴CE=AE,BC∥OA,
∴∠HCE=∠EAG,
∵在△CHE和△AGE中
,
∴△CHE≌△AGE,
∴AG=CH
(3)解:解:如图2,连接DE并延长DE交CB于M,连接AC,
∵DO=OC=1= OA,
∴D是OA的中点,
∵BC∥OA,
∴∠MCE=∠DAE,
∵在△CME和△ADE中
,
∴△CME≌△ADE,
∴CM=AD=2﹣1=1,
∵四边形OABC是矩形,
∴∠MCO=∠COD=90°,CB∥OA,
∵OD=1,OA=2,
∴OD=AD,
∵矩形OABC的对角线交于E,
∴E为中心,
∴DE∥OC,
∴四边形CMDO是矩形,
∴MD⊥OD,MD⊥CB,
∴MD切⊙O于D,
∵HG切⊙O于F,E(1, ),
∴可设CH=HF=x,FE=ED= MD,
在Rt△MHE中,有MH2+ME2=HE2,
即(1﹣x)2+( )2=( +x)2,
解得x= ,
∴H( ,1),OG=2﹣ = ,
∴G( ,0),
设直线GH的解析式是:y=kx+b,
把G、H的坐标代入得: k+b=0,且1= k+b,
解得:k=﹣ ,b= ,
∴直线GH的函数关系式为y=﹣ x+
(4)解:解:如备用图3,连接BG,过P做PN⊥GA,垂足为N,
∵在△OCH和△BAG中
,
∴△OCH≌△BAG,
∴∠CHO=∠AGB,
∵∠HCO=90°,
∴HC切⊙O于C,HG切⊙O于F,
∴OH平分∠CHF,
∴∠CHO=∠FHO=∠BGA,
∵四边形OCBA是矩形,
∴BC∥OA,BC=OA,
∵CH=AG(已证),
∴BH=OG,BH∥OG,
∴四边形BHOG是平行四边形,
∴OH∥BG,
∴∠OHE=∠BGE,
∵∠CHO=∠FHO=∠BGA
∴∠BGA=∠BGE,
即BG平分∠FGA,
∵⊙P与HG、GA、AB都相切,
∴和∠HGA的两边都相切的圆的圆心在∠HGA的角平分线上,即在GB上
∴圆心P必在BG上,
∴△GPN∽△GBA,
∴ ,
设半径为r,
= ,
解得:r= .
答:⊙P的半径是
【解析】(1)解:E的坐标是:(1, ), 所以答案是:(1, );
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.