题目内容

【题目】如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD= ,以O为圆心,OC为半径作 ,交OB于E点.

(1)求⊙O的半径OA的长;
(2)计算阴影部分的面积.

【答案】
(1)

解:连接OD,

∵OA⊥OB,

∴∠AOB=90°,

∵CD∥OB,

∴∠OCD=90°,

在RT△OCD中,∵C是AO中点,CD=

∴OD=2CO,设OC=x,

∴x2+( 2=(2x)2

∴x=1,

∴OD=2,

∴⊙O的半径为2


(2)

解:∵sin∠CDO= =

∴∠CDO=30°,

∵FD∥OB,

∴∠DOB=∠ODC=30°,

∴S=SCDO+S扇形OBD﹣S扇形OCE

= × +

= +


【解析】(1)首先证明OA⊥DF,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理即可解决问题.(2)根据S=SCDO+S扇形OBD﹣S扇形OCE计算即可.本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网