题目内容
【题目】某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:
选项 | 方式 | 百分比 |
A | 唱歌 | 35% |
B | 舞蹈 | a |
C | 朗诵 | 25% |
D | 器乐 | 30% |
请结合统计图表,回答下列问题:
(1)本次调查的学生共△人,a=△ , 并将条形统计图补充完整;
(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?
(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.
【答案】
(1)
300;700;
条形统计图如下
(2)
解:2000×35%=700(人),
答:估计该校喜欢“唱歌”这种宣传形式的学生约有700人
(3)
解:列表如下:
A | B | C | D | |
A | AB | AC | AD | |
B | AB | BC | BD | |
C | AC | BC | CD | |
D | AD | BD | CD |
由表格可知,在A、B、C、D四种宣传形式中,随机抽取两种进行展示共有12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种,
∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为 =
【解析】解:(1)∵A类人数105,占35%,
∴本次调查的学生共:105÷35%=300(人);
a=1﹣35%﹣25%﹣30%=10%;
故答案为:(1)300,10%.
B的人数:300×10%=30(人),补全条形图如图:
(1)根据“唱歌”的人数及其百分比可得总人数,根据各项目的百分比之和为1可得a的值;(2)用样本中“唱歌”的百分比乘以总人数可得答案;(3)通过列表或画树状图列出所有可能结果,再找到使该事件发生的结果数,根据概率公式计算即可.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了样本估计总体和条形统计图.