题目内容

【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)求证:2CD2=AD2+DB2

【答案】
(1)

证明:∵△ABC和△ECD都是等腰直角三角形,

∴AC=BC,CD=CE,

∵∠ACB=∠DCE=90°,

∴∠ACE+∠ACD=∠BCD+∠ACD,

∴∠ACE=∠BCD,

在△ACE和△BCD中,

∴△AEC≌△BDC(SAS)


(2)

证明:∵△ACB是等腰直角三角形,

∴∠B=∠BAC=45度.

∵△ACE≌△BCD,

∴∠B=∠CAE=45°

∴∠DAE=∠CAE+∠BAC=45°+45°=90°,

∴AD2+AE2=DE2

由(1)知AE=DB,

∴AD2+DB2=DE2,即2CD2=AD2+DB2


【解析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD;
    (2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2 , 即2CD2=AD2+DB2 . 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网