题目内容
【题目】如图,为⊙O的直径, D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.
(1)求证:PQ是⊙O的切线;
(2)若⊙O的半径为2,,求弦AD的长.
【答案】(1)见解析;(2)2.
【解析】分析:(1)连接OT,只要证明OT⊥PC即可解决问题;
(2)作OM⊥AC,易知OM=TC=,OA=2.在Rt△OAM中,求出AM即可解决问题;
详解:(1)连接OT.
∵OT=OA,∴∠ATO=∠OAT.
又∠TAC=∠BAT,∴∠ATO=∠TAC,∴OT∥AC.
∵AC⊥PQ,∴OT⊥PQ,∴PQ是⊙O的切线.
(2)过点O作OM⊥AC于M,则AM=MD.
又∠OTC=∠ACT=∠OMC=90°,
∴四边形OTCM为矩形,∴OM=TC=.
在Rt△AOM中,AM═=1,
∴弦AD的长为2.
练习册系列答案
相关题目
【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有__人,a+b=__,m=___;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.