题目内容
【题目】借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC= 度.由射线OA,OB,OC组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.
【答案】(1)75°,150°;(2)15°;(3)15°.
【解析】
(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,
∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=∠COM=82.5°,∠MOE=∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【题目】某次篮球联赛共有十支队伍参赛,部分积分表如下.根据表格提供的信息解答下列问题:
队名 | 比赛场次 | 胜场 | 负场 | 积分 |
A | 18 | 14 | 4 | 32 |
B | 18 | 11 | 7 | 29 |
C | 18 | 9 | 9 | 27 |
(1)列一元一次方程求出胜一场、负一场各积多少分?
(2)某队的胜场总积分能等于它的负场总积分吗?若能,试求胜场数和负场数;若不能,说出理由.
(3)试就某队的胜场数求出该队的负场总积分是它的胜场总积分的正整数倍的情况?