题目内容
已知矩形ABCD中,AB=1,在BC上取一点E,AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=________.
分析:可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.
解答:∵AB=1,
设AD=x,则FD=x-1,FE=1,
∵四边形EFDC与矩形ABCD相似,
∴=,=,
解得x1=,x2=(不合题意舍去),
经检验x1=是原方程的解.
故答案为.
点评:本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.
练习册系列答案
相关题目