题目内容
阅读理解并回答问题.(1)观察下列各式:
1 |
2 |
1 |
1×2 |
1 |
1 |
1 |
2 |
1 |
6 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
12 |
1 |
3×4 |
1 |
3 |
1 |
4 |
1 |
20 |
1 |
4×5 |
1 |
4 |
1 |
5 |
1 |
30 |
1 |
5×6 |
1 |
5 |
1 |
6 |
请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
1 |
x(x+1) |
(2)请利用上述规律计算:(要求写出计算过程)
1 |
2 |
1 |
6 |
1 |
12 |
1 |
(n-1)n |
1 |
n(n+1) |
(3)请利用上述规律,解方程
1 |
(x-4)(x-3) |
1 |
(x-3)(x-2) |
1 |
(x-2)(x-1) |
1 |
(x-1)x |
1 |
x(x+1) |
1 |
x+1 |
分析:(1)
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,…则
=
-
.
(2)将
+
+
+…+
+
变形为
-
+
-
+
-
…+
-
+
-
是解题的关键.
(3)根据(1)的规律原方程变形为
-
=
是解题的关键.
1 |
2 |
1 |
1×2 |
1 |
1 |
1 |
2 |
1 |
6 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
12 |
1 |
3×4 |
1 |
3 |
1 |
4 |
1 |
20 |
1 |
4×5 |
1 |
4 |
1 |
5 |
1 |
30 |
1 |
5×6 |
1 |
5 |
1 |
6 |
1 |
x(x+1) |
1 |
x |
1 |
x+1 |
(2)将
1 |
2 |
1 |
6 |
1 |
12 |
1 |
(n-1)n |
1 |
n(n+1) |
1 |
1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n |
1 |
n+1 |
(3)根据(1)的规律原方程变形为
1 |
x-4 |
1 |
x+1 |
1 |
x+1 |
解答:解:(1)
=
-
.
(2)
+
+
+…+
+
=
-
+
-
+
-
…+
-
+
-
=1-
=
.
(3)
+
+
+
+
=
则
-
=
两边同时乘以(x-4)(x+1),得
x+1-(x-4)=x-4
解得x=9
经检验x=9是原方程的解.
1 |
x(x+1) |
1 |
x |
1 |
x+1 |
(2)
1 |
2 |
1 |
6 |
1 |
12 |
1 |
(n-1)n |
1 |
n(n+1) |
=
1 |
1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
=
n |
n+1 |
(3)
1 |
(x-4)(x-3) |
1 |
(x-3)(x-2) |
1 |
(x-2)(x-1) |
1 |
(x-1)x |
1 |
x(x+1) |
1 |
x+1 |
则
1 |
x-4 |
1 |
x+1 |
1 |
x+1 |
两边同时乘以(x-4)(x+1),得
x+1-(x-4)=x-4
解得x=9
经检验x=9是原方程的解.
点评:通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为
=
-
.
1 |
x(x+1) |
1 |
x |
1 |
x+1 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目