题目内容
【题目】(2017济宁,第21题,9分)已知函数的图象与x轴有两个公共点.
(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;
(2)题(1)中求得的函数记为C1.
①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;
②函数的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.
【答案】(1)m<且m≠0,;(2)①﹣2;②.
【解析】试题分析:(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;
(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;
(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.
试题解析:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.
∵m为符合条件的最大整数,∴m=2,∴函数的解析式为.
(2)抛物线的对称轴为x= =.
∵n≤x≤﹣1<,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小,∴当x=n时,y=﹣3n,∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去),∴n的值为﹣2.
(3)∵=,∴M(,).
如图所示:
当点P在OM与⊙O的交点处时,PM有最大值.
设直线OM的解析式为y=kx,将点M的坐标代入得:,解得:k=,∴OM的解析式为y=x.
设点P的坐标为(x,x).
由两点间的距离公式可知:OP==5,解得:x=2或x=﹣2(舍去),∴点P的坐标为(2,1),∴当点P与点M距离最大时函数C2的解析式为 .
【题目】某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?