题目内容

【题目】已知△ABC是等边三角形,以BC为直径的半圆O与边AB相交于点D,DE⊥AC,垂足为点E.

(1)判断DE与⊙O的位置关系,并证明你的结论;

(2)若AE=1,求⊙O的直径.

【答案】(1)见解析

(2)OB =2

【解析】

试题分析:(1)连接OD,由等边三角形的性质得出AB=BC,∠B=∠C=60°,证出△OBD是等边三角形,得出∠BOD=∠C,证出OD∥AC,得出DE⊥OD,即可得出结论;

(2)连接CD,根据圆周角定理和等边三角形的性质得出BD=AD=OB,然后解直角三角形即可求得.

试题解析:(1)DE是⊙O的切线;理由如下:

连接OD,如图1所示:

∵△ABC是等边三角形,

∴AB=BC=AC,∠B=∠C=60°,

∵OB=OD,

∴△OBD是等边三角形,

∴∠BOD=60°,

∴∠BOD=∠C,

∴OD∥AC,

∵DE⊥AC,

∴DE⊥OD,

∴DE是⊙O的切线;

(2)连接CD,

∵BC为直径,

∴CD⊥AB,

∴BD=AD=OB,

在直角△ADE中,

∠A=60°,

∴AD=2AE=2,

∴OB=AD=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网