题目内容
【题目】已知中,,分别平分和,、交于点.
(1)直接写出与的数量关系;
(2)若,利用(1)的关系,求出的度数;
(3)利用(2)的结果,试判断、、的数量关系,并证明.
【答案】(1);(2);(3),见解析.
【解析】
(1)利用角平分线的定义、三角形的内角和定理即可求出.
(2)直接代入即可求解;
(3)在CB上取点G使得CG=CD,可证△BOE≌△BOG,得BE═BG,可证△CDO≌△CGO,得CD=CG,可以求得BE+CD=BC.
(1)关系是:
理由如下:
∵∠ABC、∠ACB的平分线相交于点O,
∴∠OBC=∠ABC、∠0CB=∠ACB,
∴∠OBC+∠0CB=∠ABC+∠ACB=(180°∠A)=90°∠A,
∴∠BOC=180°(∠OBC+∠0CB)=180°(90°∠A)=90°+∠A.
即
(2)
(3)答:数量关系是:
证明:在上取点,使得,
由(2)知:,
∴,
∵平分,
∴
在和中,
∴,
∴,
∴
又平分
∴
∴在和中,
∴,
∴
∵
∴.
练习册系列答案
相关题目