题目内容
【题目】在平面直角坐标系xOy中,若点P(4,3)在⊙O内,则⊙O的半径r的取值范围是( )
A. 0<r<4B. 3<r<4C. 4<r<5D. r>5
【答案】D
【解析】
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(-1,0);
⑤当1<x<4时,有y2<y1,
其中正确的是( ).
A. 5个 B. 4个 C. 3个 D. 2个
【题目】如图,矩形BCDE的各边分别平行于轴或轴,物体甲和物体乙由点(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2015次相遇地点的坐标
是( )
A. (-1,1) B. (1,-1) C. (-2,0) D. (-1,-1)
【题目】在平面几何的学习过程中,我们经常会研究角和线之间的关系.
(1)如图①,直线a、b被直线c所截,交点分别为A、B.当∠1、∠2满足数量关系 时,a∥b;
(2)如图②,在(1)中,作射线BC,与直线a的交点为C,当∠3、∠4满足何种数量关系时,AB=AC?证明你的结论;
(3)如图③,在(2)中,若∠BAC=90°,AB=2,⊙I为△ABC的内切圆.
①求⊙I的半径;
②P为直线a上一点,若⊙I上存在两个点M、N,使∠MPN=60°,直接写出AP长度的取值范围.
【题目】在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A. 圆锥 B. 圆柱 C. 球 D. 正方体
【题目】已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.
【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.
【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.
【题目】已知A、B两地相距126km,一辆小汽车和一辆货车分别从A、B两地同时出发,相向而行,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是( )
A.
B.
C.
D.