题目内容
【题目】如图,在正方形ABCD中,点E是AD的中点,连接BE、CE,点F是CE的中点,连接DF、
BF,点M是BF上一点且=,过点M作MN⊥BC于点N,连接FN,则= .
【答案】
【解析】
试题分析:根据正方形的性质得到∠A=∠ABC=∠BCD=∠CDA=90°,AB=BC=CD=DA,AD∥BC.设AE=a,则DE=a,AB=BC=CD=DA=2a.根据勾股定理得到BE=a,CE=a,得到BE=CE,过点F作FG⊥AD于G,FG交BC于H.根据FG∥CD,点F是CE的中点,得到EG=DG=DE=a,GF=CD=a.根据三角函数的定义得到∠AEB=∠GDF,由平行线的性质得到∠BEF=∠DFE,推出△EFG≌△CFH,根据全等三角形的性质得到FG=FH=a,EG=CH=a.推出四边形CDGH是矩形,根据矩形的性质得到CH=DG=a,根据平行线分线段成比例定理得到==,于是得到MN=FH=a,BN=BH=a,求得S△FMN==a×a=a2,S四边形FEBN=S正方形ABCD﹣S△ABE﹣S△CDE﹣S△CNF=4a2﹣2aa﹣﹣=a2.即可得到结论.
解:∵四边形ABCD是正方形,
∴∠A=∠ABC=∠BCD=∠CDA=90°,AB=BC=CD=DA,AD∥BC.
设AE=a,则DE=a,AB=BC=CD=DA=2a.
在△ABE中,由勾股定理,得BE=a,
在△CDE中,由勾股定理,得CE=a,
∴BE=CE,
过点F作FG⊥AD于G,FG交BC于H.
∵AD∥BC,FG⊥AD,∴GH⊥BC.
∵FG∥CD,点F是CE的中点,
∴EG=DG=DE=a,GF=CD=a.
在直角△ABE中,∵tan∠AEB===2,
在直角△GFD中,∵tan∠GDF===2,
∴tan∠AEB=tan∠GDF,
∵0°<∠AEB<90°,0°<∠GDF<90°,
∴∠AEB=∠GDF,
∴BE∥DF,
∴∠BEF=∠DFE,
在△EFG与△CFH中,,
∴△EFG≌△CFH,
∴FG=FH=a,EG=CH=a.
∵GH∥CD,GD∥HC,∠CDA=90°,
∴四边形CDGH是矩形,
∴CH=DG=a,
∴BH=BC﹣CH=a.
∵MN⊥BC,GH⊥BC,
∴MN∥FH,
∴==,
∴MN=FH=a,BN=BH=a,
∴MN=AB,
∵BN=CH=a,
∴NH=BC﹣BN﹣CH=a,
∴S△FMN==a×a=a2,
S四边形FEBN=S正方形ABCD﹣S△ABE﹣S△CDE﹣S△CNF=4a2﹣2aa﹣﹣=a2.
∴==.
故答案为:.