题目内容
【题目】如图,在△ABC中,tanA=,∠B=45°,AB=14. 求BC的长.
【答案】∴BC=6
【解析】试题分析:
如图,过点C作CD⊥AB于点D,得到Rt△ADC和Rt△BCD,由在Rt△ADC中tanA=,设CD=3x,AD=4x,则在Rt△BCD中,由∠B=45°,可得BD=CD=3x,结合AB=14由勾股定理列出方程解得x的值,再在Rt△BCD中,由勾股定理即可求得BC的值.
试题解析:
如图,过点C作CD⊥AB于点D,
∴∠ADC=∠BDC=90°,
∵tanA=,
∴,
设CD=3x,则AD=4x,
∵∠B=45°,∠BDC=90°,
∴BD=CD=3x,
∵AD+BD=AB=14,
∴4x+3x=14,解得x=2,
∴BD=CD=6,
∴BC=.
练习册系列答案
相关题目
【题目】8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).
平均分 | 方差 | 中位数 | 众数 | 合格率 | 优秀率 | |
一班 | 7.2 | 2.11 | 7 | 6 | 92.5% | 20% |
二班 | 6.85 | 4.28 | 8 | 8 | 85% | 10% |
根据图表信息,回答问题:
(1)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;
(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?